Chapitre MF3 – Bilans macroscopiques

I) Relation de Bernoulli

1) Énoncé

<u>Hypothèses</u> : soit un écoulement **stationnaire** d'un fluide **parfait** (sans viscosité, sans transferts thermiques) et **incompressible** et **homogène** (masse volumique constante).

Entre deux points 1 et 2 de l'écoulement, le premier principe industriel donne :

$$\Delta_{1\to 2} \left(\frac{P}{\rho} + \frac{v^2}{2} \pm gz \right) = w \quad \text{avec} : \quad \begin{cases} +: \text{si axe } z \text{ vers le haut} \\ -: \text{si axe } z \text{ vers le bas} \end{cases}$$

Où en terme de puissance :

$$D_m \times \Delta_{1\to 2} \left(\frac{P}{\rho} + \frac{v^2}{2} \pm gz \right) = \mathcal{P} \quad \text{avec} : \quad \begin{cases} +: \text{ si axe } z \text{ vers le haut} \\ -: \text{ si axe } z \text{ vers le bas} \end{cases}$$

Démonstration :

Il s'agit simplement du PPI avec q = 0 (adiabatique) et $\Delta_{1\to 2}(u) = 0$ car fluide parfait.

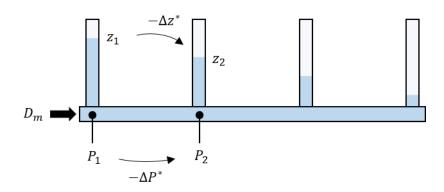
$$h = u + Pv = u + \frac{P}{\rho}$$
 avec : v le volume massique

2) Puissance utile et pertes de charge

Le terme de puissance peut par exemple représenter :

- o Un travail massique / une puissance utile \mathcal{P}_u (si pièces mobiles, comme dans une pompe ou une turbine). Si $\mathcal{P}_u > 0$, le fluide reçoit de la puissance. Si $\mathcal{P}_u < 0$, le fluide cède de la puissance.
- o Une énergie massique perdue, appelée **perte de charge**. La perte de charge peut s'exprimer en termes de pression ou de hauteur.

Exemple:



Observation : le niveau d'eau baisse.

<u>Interprétation</u> : l'expérience est contraire à ce que prévoient le théorème de Bernoulli, c'est donc que l'une des hypothèses n'est pas vérifiée dans l'expérience.

- o Incompressible? pas de problème pour l'eau
- Stationnaire? aucun soucis
- o Parfait? C'est cette hypothèse qu'il faut remettre en cause, la puissance dissipée par viscosité n'est pas négligeable.

On peut donc écrire :

$$\Delta_{1\to 2} \left(\frac{P}{\rho} + \frac{v^2}{2} \pm gz \right) = w_u + w_{\text{visc}} \quad \text{avec} : \quad w_{\text{visc}} = -\frac{\Delta P^*}{\rho} = -\rho \Delta z^* < 0$$

 ΔP^* correspond à une chute de pression supplémentaire entre 1 et 2

 Δz^* correspond à une chute d'altitude supplémentaire entre 1 et 2

3) Débits

Un énoncé pourra introduire soit le débit massique, soit le débit volumique.

$$D_m = \frac{\delta m}{dt} = \rho S v \quad \text{et} \quad D_V = \frac{\delta V}{dt} = S v \quad \Rightarrow \quad D_m = \rho D_V$$

Propriété:

- $\circ~$ En régime station naire, D_m se conserve ;
- \circ Pour un fluide incompressible, D_V se conserve.

II) Applications

Exercices du TD.